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Invited Article 
E.S.R. and D.S.C. investigations of phase transitions in polymorphic 

4-n-alkoxybenzylidene-4’-n-alkylanilines 

by SHANKAR B. RANANAVARE, V. G. K. M. PISIPATIT 
and JACK H. FREED 

Baker Laboratory of Chemistry, Cornell University, Ithaca, 
New York 14853-1301. U.S.A. 

It is shown that the McMillan parameter M = TSAN/TNI (where TSAN and TNI 
are respectively the temperatures of the smectic A to nematic (SAN) and the 
nematic to isotropic (NI) phase transitions) is useful in analysing the crossover 
between second and first order behaviour of the SAN transition in the n 0 . m  
homologous liquid crystal series (the 4-n-alkoxybenzylidene-4-n-alkylanilines). 
Using a phase diagram of orientational ordering versus M for this series, as 
obtained in this work (from E.S.R. and D.S.C.), a symmetric tricritical point with 
mean field exponent f12 = 1 is demonstrated. In a preliminary study of E.S.R. 
linewidth parameters Band C of nitroxide spin probes dissolved in members of the 
n 0 . m  series exhibiting a first order SAN transition, critical-type divergences are 
observed near this transition. In the case where M is closer to 0.959 (the value at 
the tricritical point), these divergences appear similar to those previously observed 
in related n0.m members with a second order SAN transition; however, they are 
considerably enhanced for an M value closer to unity (i.e. more removed from the 
tricritical point). This indicates the importance of coupling between orientational 
and positional order parameters in the observed critical-type divergences. 

1. Introduction 
Ever since the synthesis reported by Kelker and Scheurle [ I ]  of 4-methoxy- 

benzylidene-4’-n-butylaniline (10.4 usually referred as MBBA), the n0.m compounds 
have attracted a great deal of attention due to their ease in preparation and their rich 
but subtle polymorphism, The phase transitions and the critical behaviour in these 
compounds is unusually rich, and it has been a subject of considerable theoretical 
interest. Despite the work of many groups, there are still many unsolved problems 
which remain. One such problem is the order of the smectic A-nematic (SAN) 
transition which forms the main focus of this article. Depending on the extent of 
the nematic phase, the order of the phase transition seems to vary from second 
order (for compounds having a large nematic phase extent) to first order. An early 
theoretical attempt to explain this behaviour is due to McMillan [2,3], who extended 
the Maier-Saupe mean field theory [4] to incorporate the positional as well as 
the orientational ordering of the molecules in the smectic phase. However, experi- 
mentally observed [5-91 critical exponents do not agree with the mean field theoretical 
predictions. De Gennes [lo], using a Landau expansion of the smectic free energy, 
emphasized the coupling between the smectic order parameter and the nematic or 

t Permanent address: Department of Physics, Nagarjuna University, Nagarjuna Nagar 
522510, India. 
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orientational order parameter S.  When large fluctuations in S are permitted, this can 
cause the phase transition to be first order. A nematic phase of large extent, however, 
would result in S being saturated, thereby reducing the importance of the coupling 
term so the transition becomes second order. These theories thus imply the existence 
of a tricritical point at the crossover from second to first order behaviour. De Gennes 
and McMillan also suggested that the SAN transition should be very similar to that 
of superfluid helium, and Alben [I 11 predicted a 3He/4He-like tricritical point in 
binary liquid crystal mixtures. This is because the SAN transition is characterized by 
a spatial dimensionality of three and an order parameter with two components 
(amplitude and phase). 

However, the theoretical story is more complex, and Halperin et al. [12] have 
stressed the analogy between the smectic A phase hamiltonian and the superconductor 
hamiltonian, since the gauge invariance of the coupling of the nematic director 
(= vector potential) and the smectic order (= superconductor order parameter) 
parameters is similar. This analogy lead these authors to predict that the SAN 
transition can never be truly second order, which of course rules out the possibility 
of a tricritical point. Though the de Gennes and McMillan theories have successfully 
provided a great deal of physical insight which has enabled the prediction and 
calculation of various physical properties near the SAN transition, the critical 
exponents associated with the correlation length ( r )  are not correctly predicted. The 
critical exponents associated with r,, and rl are anisotropic [6]. Nelson and Toner [13] 
have more recently been able to show anisotropic exponents v such that vI = t v , ,  
using the dislocation loop theory [14] for the smectic A melting. 

Research efforts in our laboratory are focused on detecting the critical effects in 
static or equilibrium behaviour and in the dynamics, near the SAN phase transitions, 
as revealed through magnetic resonance, differential scanning calorimetry (D.S.C.) 
and X-ray [ 15-1 71 scattering studies. In a recent investigation we were able to locate 
the tricritical point at the SAN transition in mixtures of 40.6/60.4.  The phase diagram 
as well as the critical exponent for the jump in the order parameter of a spin label 
verified the similarity of the SAN transition to the superfluid transition in He/4He 
mixtures [ 151. These studies were undertaken mainly to complement existing studies 
[5-91 on static aspects of the critical phenomenon near the NA transition. Further- 
more, a systematic study of the n 0 . m  series, through variation of the alkyl and alkoxy 
chain lengths while keeping the central core fixed, gives insight into the molecular 
aspects of the phase mesomorphism. Additionally, a great deal of fine-tuning of the 
nematic range can easily be accomplished through study of mixtures of the members 
of this series. Our preliminary studies of nematic order parameters near the SAN 
transition [15] have been helpful in illustrating one very useful feature of such studies, 
viz. such mixtures can be used to examine the crossover phenomenon near the 
tricritical point. 

The fluctuations in S are of great importance in driving the SAN transition. 
Magnetic resonance line widths lend themselves directly to assessing the magnitude 
of such orientational fluctuations. Thus we have probed the dynamic aspects of the 
SAN transition by measuring E.S.R. linewidth parameters (B,  C). In an earlier paper 
[18] we have shown the connection between the correlation length and the B and C 
terms measured from the E.S.R. linewidths near the NI (nematic-isotropic) transition. 
The theory is suited for weakly ordered spin probes undergoing fast brownian motion. 
In the fast motional limit, time scale separation arguments may be applied to calculate 
the spin relaxation contribution of various cooperative motional modes of the liquid 
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crystals to the B, C terms. We have demonstrated [19-211 that in 40.6, the E.S.R. 
linewidth parameters (B,  C )  show critical divergences near the NI and the SAN phase 
transitions in a manner consistent with the correlation length divergence near these 
phase transitions. In particular, the divergence in linewidths near the NI transition 
obeys the f power law, characteristic of the Landau-de Gennes mean field theory, 
whereas near the second order SAN transition a 3 power law is observed that is 
consistent with dynamic scaling and the superfluid analogy. 

The theoretical framework [18 (b), 19,211 for the critical divergence of the spin 
probe linewidths near the SAN transition is formulated using the dynamic scaling 
arguments proposed by Brochard and Jahnig-Brochard [22]. The relevant order 
parameter in the smectic A phase is a complex number (so that the dimensionality of 
the smectic order parameter Y is two), the modulus of which corresponds to the 
density of layers while the phase factor determines the position of the layers. Expand- 
ing the free energy near the SAN transition in terms of this complex order parameter 
(including spatial gradients as well as coupling to the nematic director terms) followed 
by Fourier transformation, the wavevector (q)  dependent free energy is obtained. 
Then by applying the equipartition theorem for each q mode, the amplitude of the 
fluctuation of the nematic and smectic order parameters for that particular mode is 
determined. Associated with these q modes are the dynamic relaxation times that 
depend upon the correlation lengths and also exhibit critical slowing down at the SAN 
phase transition. The spin relaxation may then be looked upon as a motional averaging 
by q mode dynamics of the Fourier-analysed terms of the spin hamiltonian which are 
being modulated. Thus the anomalous contribution to the B, C term which appear to 
diverge near the SAN transition is a consequence of the divergence of the correlation 
lengths as well as the critical slowing down of the dynamic relaxation times. 

This paper presents a continuation of our studies of these matters. In $2 we review 
our previous study [ 151 of 40.6/60.4 mixtures, emphasizing particularly the D.S.C. 
method [I61 to locate the tricritical point. We then demonstrate the very similar 
general behaviour for the entire homologous series with respect to the SAN transition. 
Lastly, we present our preliminary results on the dynamics of spin labels near the 
weakly first order SAN transition of 60.4(23) and 70.5(24). Our conclusions appear 
in $3. 

2. Results and discussion 
2.1. Mixtures of 40 .6  and 60 .4  

To analyse the order of the SAN transition we have employed a D.S.C. method 
recently developed by Navard and Cox [25]. These authors show that the ratio ( N )  
of the D.S.C. peak heights H 2 / H l  for a given transition, performed with two different 
heating rates ( r2 ,  r l ) ,  is a function of the ratio r2 / r ,  (= R ) ,  and the magnitude of N 
provides a simple way to discern the order of the phase transition. From a simple 
theory of D.S.C. peak shapes for a first order transition, it can be shown that in the 
limit of small heating rates, N varies as the square root of R, but for a second order 
transition N should be directly proportional to R. In our studies we typically used 
R = 2. An N value of 1.41 for 60.4 was taken as an indicator of a weakly first order 
SAN phase transition. We present in figure 1 a plot of N versus composition of 40.6 
in mixtures of 40.6/60.4. The most dramatic changes in N occur just where the 
crossover between the first and second order SAN transition takes place, and it is 
limited to a rather narrow composition range (75-81 per cent of 40.6). 

This D.S.C. technique was used in conjunction with an E.S.R. technique where a 
rigid spin label such as the cholestane nitroxide (CSL) was dissolved in the liquid 
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Figure 1. The Cox-Navard parameter, N from D.S.C. measurements versus percentage 
of 40.6 in mixtures of 40.6/60.4. The tricritical composition is 81 per cent of 40.6  
as marked. 

crystal, and the variation of its order parameter as a function of temperature through 
the SAN transition was monitored. A discontinuous change in the order parameter at 
the SAN phase transition (i.e. A S  # 0) indicates a first order phase transformation 
and vice versa. In figure 2 we show, for comparison, the jump in the nematic order 
parameter as a function of 40.6 composition (figure 2 ( 4 )  and M (figure 2(b)) 
(both based on [15]). Clearly, the range over which A S  decreases is rather broad. 
Nevertheless A S  goes to zero at the same composition that N approaches 2. Thus, 
these two simple techniques provide relatively accurate and consistent ways to locate 
a tricritical point. Furthermore, the ASvariation as a function T S A N  was found to yield 
b2 z 1.00 f 0.05 (cf. the solid line in figure (2)), a critical exponent which is defined 
as [15] 

2.2. Phase diagram and tricritical point for the n0 .m homologous series 
We now examine the members of the n 0 . m  homologous series that exhibit a weak 

first order, or else second order, transition. The object here is that through a variation 
of n and m one may cross over through a tricritical point in a SAN transition. In the 
work of mixtures of 40.6/60.4 it was found that the mole fraction (of 40.6) x could 
play the role of the conjugatefield with which to study this crossover. More precisely, 
we could use T S A N  (x) as shown by equation (1) to describe the decrease of A S  with 
x as the tricritical point is approached. However, for the n 0 . m  homologous series, 
where T S A N  becomes a function of n and m,  we do not find that equation ( 1 )  applies 
to our data. This is indicative of the fact that we do not have the relevant independent 
field to perform our analysis of the density variables (e.g. AS) at the SAN transition 
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AS, the difference in nematic order in the smectic and nematic phases in coexistence 
along the line of the first order transitions plotted as a function of (a) percentage of 40.6  
and (b) McMillan ratio, M for mixtures of 40.6/60.4. The tricritical Doint is marked and 

Figure 2. 

the line corresponding to the second order transition is also shown. (Data are from 
~ 5 1 ) .  
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for the homologous series. Instead, we recall from the study of mixtures [15] that 
the McMillan parameter, M = TSAN/TNI ,  was useful to renormalize the reduced 
temperature I so as to yield a universal curve for the dependence of S on temperature 
in the nematic phase. Furthermore, in the McMillan theory, the order of the SAN 
transition is shown to be determined by M.  The table shows a partial list of the 
members of the n 0 . m  series along with their respective McMillan parameters, M.  We 
find that the compounds having values of M > 0.959 (< 0.959) exhibit first (second) 
order SAN transition with M = 0.959 0.005 at the tricritical point (TCP) (see 
later). This is in agreement with the value of 0.951 rt 0.003 (cf.  figure 2 (b)) found in 
40.6/60.4 mixtures. Of course, the value of MTcp is expected to be different for 
different homologous series. 

Such considerations have lead us to consider M as an appropriate field value with 
which to study the crossover in a homologous series. It should not in any way be 
confused with the temperature variable, T, despite its definition. That is TSAN and TNI 
are distinct values at the phase transition and are really functions of x for mixtures 
of n and m in the homologous series. Thus equation (1) is really not a critical exponent 
with respect to T, but with respect to TSAN = TSAN(x, n,  m),  etc. Thus we shall write 
equation (1) as 

A S  cc ( M  - MTcp)82. (2) 

For 40.6/60.4 mixtures, where TNI(x) is a constant independent of x [15], the 
proportionality of equation (2) reduces to that of equation (1). However, this is not 
so for the homologous series, because the TN, values are observed to vary over a wide 
range [16]. In a similar spirit we shall use as our reduced temperatures: t = T/TNl ,  so 
that we scale with the TN, characteristic of the particular n and m values. 

In figure 3 (6) we show the jump in spin probe (C.S.L.) order parameter at the SAN 
transition as a function of M ,  and in figure 3 (a) the limiting values of the nematic 
order parameter at the phase boundary are shown. The solid line in figure 3 ( b )  
corresponds to p2 = 0.94 & 0.12 in agreement with the mean field value of unity [26]. 
(The values of the D.S.C. parameter N for these compounds range between 1.0 and 
1.4 except for 50.6 ( N  = 1.5) and 60.3 ( N  = 1.54) where these values exceed J2. 
This is consistent with our results in figure 1 for N in mixtures, in that only very near 
the tricritical point does N change from J2 to 2.0.) The straight line extrapolates to 
M = 0.959 f 0.005 where A S  = 0. Thus these results taken together with our 
previous results on the mixtures of 40.6/60.4 suggest that, for a weakly first order 
SAN transition, the mean field theory is adequate in describing the transition. This 
was further corroborated by X-ray scattering studies [17] of 60.4. We found that 
within experimental accuracy tI, /tl remained constant as a function temperature near 
the SAN transition. That is, the critical exponents vII and vL are equal and are found 
to be close to the mean field theoretic value o f t .  

Our results also suggest that the mean field theory be applied with the following 
variables: the reduced temperature, t = T/TNI, as introduced previously, and its 
conjugate field variable, M ,  which replaces x used for 40.6/60.4 mixtures. This is 
considered further in the Appendix. 

2.3. E.S.R. linewidths near the S, N transition 
Guided by the results just described, we undertook a series of E.S.R. linewidth 

studies in compounds exhibiting a weakly first order SAN transition. More particularly, 
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Figure 3. (a) The nematic order parameter S is plotted versus the value of McMillan ratio, 
M(n,  m) = TSAN/TNI for n0.m homologues (as shown). The coexistence region and 
the 1 line are shown. This figure has the appearance of a phase diagram with M acting 
as a crossover variable. (b) A S  at the S,N phase transition versus M(n,  m) for the 
n0.m homologues shown in (a). The straight line fit yields a p2 = 0.94 f 0.12 and 
Mrcp = 0.959 0.005. 
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our interest was to see if a critical divergence in E.S.R. linewidths could be observed 
near a weakly SAN transition and, if so, whether it is similar to what is observed 
[19-211 at a second order SAN transition. Careful quantitative studies of such 
phenomena are very time consuming, since they involve millikelvin temperature 
stability and control. Our present objectives were more of a preliminary nature: we 
wished to explore several liquid crystals and spin probes to observe general trends. 
Thus, in the present work we settled for f 0.1 K temperature control, which is more 
convenient to obtain [15]. 

Our E.S.R. studies were conducted using spin probes shown in the table. Note that 
P probe is similar in structure to a liquid crystal molecule, and in n 0 . m  compounds 
such as 40.6 it exhibits [27] the ordering and dynamics similar to that expected for 
the liquid crystal molecules. MOTA, however, is smaller and more weakly ordered 
[20]; its location relative to the liquid crystal host molecules can vary with the phase, 
and this will influence its ordering and dynamics. 

The liquid crystals we have used are 60.4  ( M  = 0.976) and 7 0 . 5  ( M  = 0.990). 
Thus, whereas both exhibit first order transitions (recall M = 0.959 at the tricritical 
point), 60.4 should be more nearly second order as judged from its M value. The 
phase diagrams of these compounds are well known and they were synthesized using 
standard procedures and purified by recrystallization from alcohol. The following is 
the phase sequence in these two compounds. The transition temperatures we observe 
compare well with prior work [28]; they are 

59.2" 57.6' 60.4 I - N 5 SA - SB - SG K, 

7 0 . 5  I 83.2" - N 79.6" - S A  
68.3" - SB 

56.4' - 25.2" - K. 

The NI, SAN and S B S A  phase transition temperatures were determined using D.S.C. 
while the BG transition occurs near room temperature and was detected from optical 
microscopy and also from X-ray scattering. 

Spin probe doped samples were prepared using standard procedures [29]. First 
we note the salient features of the E.S.R. results. As is expected, we observe a 
discontinuity in the orientational order parameters of the spin labels at the NI, SAN 
and smectic B-smectic A phase transitions. For the SAN transition, we also expect a 
jump in the smectic order parameter (recall these are first order SAN transitions). This 
information is, however, not obtainable from E.S.R. results. The intensity of the 
Bragg peaks in the small angle X-ray diffraction patterns provides a direct method to 
accomplish such a measurement of the smectic positional order parameter. We have 
recently completed, at the CHESS Synchrotron facility, a preliminary study to 
measure these order parameters, and this will be reported elsewhere. 

The spin label (MOTA, P probe) (also see [27]) order parameters as a function of 
temperature are shown in figures 4 and 5. (For P probe the data collected were limited 
to isotropic, nematic and smectic A phases, since it proved very difficult to maintain 
the alignment of this probe with respect to the applied magnetic field in the low 
temperature phases.) In the smectic and nematic phases the P probe order parameter 
(cf. figure 5) variation bears a strong resemblance to the order parameter predictions 
of McMillan for the liquid-crystalline molecules. It is interesting to compare the 
ordering of these two probes in the smectic A phase. P probe ordering continues to 
increase with decrease in temperature as expected, whereas the order parameter of 
MOTA remains essentially constant. The same effect is clearly seen in 7 0 . 5 .  In 7 0 . 5 ,  
where the smectic C phase precedes the smectic B phase, similar trends continue. This 
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Figure 6. Linewidth parameters B and C for the P probe in the n 0 . m  homologues versus 
temperature: (a) and (b) give B and C respectively for 70.5 solvent, whereas (c) and ( d )  
give B and C respectively for 60.4 solvent. The solid lines are suggestive extrapolations; 
the dotted lines are estimates of the background (i.e. non-critical) contributions to the 
linewidths. 
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Figure 7. Linewidth parameters B and C tor MOTA in the n 0 . m  homologues. (a), (b), (c)  

and ( d )  are otherwise identical to figure 6. 
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effect can be rationalized in terms of rapid exchange of the smaller MOTA spin probe 
between the aromatic core region and the lower density hydrocarbon chain region of 
the smectic layers; whereas for the P probe, which is structurally similar to the liquid 
crystal, no such tendency is observed. Upon entering the smectic B phase, MOTA is 
completely expelled into the interlayer region, which is reflected in the reduction of 
its order parameter to zero. 

Figures 6 and 7 depict the B, C parameter variation for P probe and MOTA in the 
various mesomorphic phases. The solid line drawn through the points in the isotropic 
and nematic phases include extrapolations to emphasize the critical enhancement of 
these parameters. The underlying lines reflect our initial estimation of the background 
linewidths, i.e. the contribution of rotational diffusional averaging of the magnetic 
parameters to the linewidths. A strong divergence in the spin label linewidth par- 
ameters on either side of the NI transition for both 60.4  and 70.5 supports our 
previous studies a t  the NI transition where a 3 power law divergence in the B and C 
parameters was observed. 

At the SAN transition in 70.5 a rather strong divergence in B, C for both MOTA 
and the P probe is observed. The extent of the divergence is quite dramatic compared 
to our previous studies near a second order SAN transition in 40.6.  Equally significant 
is that this is the first time we have results for the P probe (which is not expelled), 
showing a divergence on the nematic side of the SAN transition. 

However, in 60 .4  the B, C values associated with MOTA show a weaker critical 
divergence at the SAN transition, and the exact situation for P probe B and C 
parameters is not clear due to lack of accurate data very close to the transition. The 
general trends are quite similar to what is observed in 40.6  [20] with its second order 
S,N transition. In this respect, it is useful to recall that the McMillan parameter M 
is 0.936 for 40.6,  0.976 for 60 .4  and 0.990 for 70.5.  Thus, smectic driven fluctuations 
of the orientational order are much more likely in 70.5 than either 40 .6  or 60.4.  
In the model that we have previously proposed for the critical divergences in B 
and C [19], we relied on the expulsion effect of the smaller spin probes to predict a 
modulation of spin relaxation by the smectic-like fluctuations of the solvent near the 
SAN transition. The observation of significant divergences for the P probe, but only 
in 7 0 . 5  with a very short (3.7"C) nematic range, suggests that the direct coupling 
between orientational and positional order parameters can play a significant role 
when the former is not saturated. This matter is clearly worthy of further study using 
other homologues of the n 0 . m  series. 

We do not present estimates of the critical exponents from the data of figures 5-7, 
since the limited temperature control will render such results inaccurate. The theor- 
etical analysis leading to the solid lines shown in figures 5-7 are therefore meant to 
be suggestive rather than quantitatively accurate. Clearly, our present results show 
that it would be interesting to perform careful millikelvin temperature control on 
these systems. One question that could be addressed is whether there is a crossover 
from the critical exponent predicted ( 3 )  and found ( x  3 )  for a second order S,N 
transition for the B and C parameters to the mean field prediction (+) for the first 
order SAN transition. 

Our previous analysis [I91 for the calculation of the spectral density J ( 0 )  can be 
easily extended to show the power law of the divergent contribution to the B and C 
parameters in the regime where the transition is first order. (In [24], x the exponent 
associated with the denominator of the relation between relaxation rate r, and 45, was 
set equal to 1 in order to obtain an analytical result. For the superfluid case, however, 
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the exponent value is 2. But, in the present mean field case, x is indeed equal to 1, 
a rigorous requirement of the dynamic correlation function in the mean field limit 
[30].) One may use the final result for J(O), the zero frequency spectral density that 
leads to a f power critical exponent for a second order SAN transition (in agreement 

where M is a coefficient from the Landau expansion of the smectic free energy and 
zm is a characteristic relaxation time of the pretransitional smectic clusters. The 
divergence in J ( 0 )  is determined by z,/5. According to the dynamic scaling theory 
[22 (a)] z, is expected to vary as (T  - TSAN)-' [31]. (These authors found considerable 
deviation from this expected behaviour near a second order SA N transition for 
t < W4.) For the second order SAN transition, we expect 5 to vary as (T - TSAN)-2/3, 
yielding the - 3 power result for J(0 ) ;  for the first order SAN transition, mean field 
theory yields a (T - TSAN)-'I2 dependence for the 5 ,  so J ( 0 )  would diverge as 

The theory leading to equation (3) is based on the expulsion effect as noted pre- 
viously. It was assumed that this effect would modulate the values of S and/or of z R ,  
the rotational correlation time felt by the probe. It did not explicitly take into account 
jumps in S (i.e. AS), because it dealt with the second order SAN transition. For the 
first order S,N transition, the finite A S  can either add to or replace the expulsion 
effect in modulating the electron spin relaxation of the probe. This seems a likely 
explanation for (i) the observed increase in critical-type divergence, and (ii) critical- 
type behaviour for the P probe (which is not expelled by the transition) for a first 
order SAN transition. 

(T - TSAN)-I'2. 

3. Conclusions 
(1) We find that M is a unifying parameter for considering a crossover from 

weakly first order SAN transitions to second order transitions in the n 0 . m  series. 
The plot of A S  versus M yields a tricritical value for M as 0.959 f 0.005 and a 
p2 = 0.94 f 0.12. The latter value clearly suggests a mean field type of critical 
behaviour in the region of a weakly first order SAN transition. Both MTcp and p2 are 
in agreement with the previous result from mixtures on 40.6/60.4.  

(2) We observe divergent-type behaviour in the B and C linewidth parameters of 
nitroxide spin-labels dissolved in members of the n 0 . m  series exhibiting a weak first 
order SAN transition. There is a clear indication that such divergences become more 
pronounced as M increases toward unity. We predict that the observed + power law 
divergence in the B and C parameters for the second order SAN transitions should 
crossover to a mean field 4 power law for a weakly first order SAN transition. 

This work was supported by NSF Solid-state Chemistry Grant No. DMR-86- 
04200. 

Appendix 
Landau- de Gennes theory within a homologous series 

We shall first review the Landau-de Gennes theory for the SAN transition and 
then adapt it to show that M = TSAN/TN,, the McMillan parameter, is a relevant 
crossover variable for this transition. Here, for the n 0 . m  homologous series, we 
consider M = M ( n ,  m) ,  i.e. a function of n and m. 
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In a smectic A phase, molecules of a liquid crystal are arranged in a one dimen- 
sional periodic structure. For a monolayer smectic A phase, the molecular length gives 
the period of the one dimensional mass density wave, which can be written as 

e(z)  = @,(1 + 2 - ” ’ I Y l c o s ( ~ ) ) ,  

where eo is the average density of the liquid crystal and d its periodicity; is the 
strength of the modulation and is identified as the amplitude of the complex smectic 
A order parameter. In the Landau theory the free energy density is expanded as a 
power series in Y about its value in the nematic phase where IYl = 0; 

(A 2 4 
with tl usually written as uO(TSAN - T )  with a, positive, and the sign of Po governs the 
order of the transition, i.e. if Po is negative(p0sitive) a first (second) order transition 
results; for Po = 0.0 a tricritical phase transition is observed. The sixth order term is 
added to ensure the stability of such an expansion. In this model, a crossover to the 
tricritical point from a second order phase transition (i.e. Po < 0) is accomplished by 
finding a mechanism that changes Po to its tricritical value of 0. In general, such an 
effect can be achieved by coupling the order parameter to other density variables. In 
the case of the S,N transition, the coupling of the nematic order parameter to the 
smectic A order parameter is introduced. Upon entering the smectic A phase, an 
enhancement in S is generally observed, so a coupling term of the type - CIY I26S to 
lowest order in IY l 2  and 6s is included; this term reduces the smectic A free energy. 
However, the enhancement of the nematic order in the smectic phase occurs at the 
expense of an increase in the nematic free energy; hence we add a term 6S2/2x to 
account for this effect. We also note that in Landau or mean field theory [32], x 
diverges near the NI phase transition with a power law: 

Fs, = tllYJ2 + Po1Y14 + y1Y16 + . . . , 

and Ti,  is the apparent second order transition temperature, which is slightly higher 
(- 0.6°-1*00) than the first order transition actually observed at TNI [33,34]. This term 
in 6S2  permits larger deviations in S (from its equilibrium value So) near the NI 
transition than deeper into the nematic phase. Minimizing the total free energy with 
respect to 6S, and collecting terms, we obtain 

(A 3) FsA = Fo + t11Y12 + PlY14 + y1Y16 + . . . , 
where 

and 

It is clear from the form of P in equation (A4) that it can become negative, thereby 
leading to a first order S,N transition, when either x is large or the coupling coefficient 
C is large. 

In our previous work on 40.6/60.4 we let a = u(T, x), Po = Po(T, x), etc. Thus, 
for example tl = ao(x)(T - TC,) (where the asterisk implies TSAN for second order 
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SAN transitions or the temperature at which the second order transition would have 
occurred if it had not been for the first order transition). The results in the present 
paper suggest that we consider t = T/TNI and M in place of T and x .  Furthermore, 
S in the nematic phase obeys a nearly universal curve for the n 0 . m  series as well as 
for the mixtures [I51 when plotted against ( I  - t ) / ( l  - M ) ,  i.e. S = S( t ,  M ) .  Thus 
we shall let a = a,(M)(t - tSAN(M)), so that along the A line of second order 
transitions t = t S A N ( M )  as observed. We must also have p = p( t ,  M )  such that 
pTCp = p(MTCp, t )  = 0 to be consistent with our experimental results in figure 3. 

We now wish to outline a simple analysis yielding a rather simple expression for 
the dependence of AS upon M .  It reduces to a linear dependence of A S  with M near 
the tricritical point as required for a relevant crossover variable. In order to calculate 
AS, we must know the value of I'4"(' according to equation (A 5) ,  along the line of the 
first order SAN transitions. In the usual fashion, it is obtained by minimizing the 
modified form of the free energy (equation (A 3)) with respect to ['PI, subject to the 
constraint that FsA = Fo corresponding to equilibrium between the two phases. We 
obtain for the S, phase [32] 

and 

4ay = p. (A 6 6) 
The discontinuity in the nematic order parameter at the SAN transition is from 
equations (A 4) to (A 6), 

where we have set Po = +C'xTCp, since this renders p = 0 at the tricritical point. 
The use of equation (A2u) enables us to write xSAN = xo/(l - Mt) and xTCp % 

xo/(l - so that equation (A7) becomes 

When AM = (M' - M4cpl < 1 - MTtCp, then an expansion of equation (A 8) leads 
to the form 

2AMt + ...I. (A9) 
1 - M:cP 

Thus, for AMt sufficiently less than t ( l  - M$cp) a linear dependence of AS,,, on 
AMt with zero intercept should be observed. We imply in equation (A 9) that the term 
in the parenthesis containing xo,  C and y is not significantly dependent on M near the 
tricritical point within the homologous series, clearly a simplification. 

In the case of 40.6/60.4 mixtures (cf. figure 2 (6)) we observe the linear relation 
over a 3.5K range from the tricritical point corresponding to AMt = 1.3 x lo-*, 
whereas +(l - = 2.6 x lop2,  which does satisfy AMt < t ( l  - Micp). 
For pure compounds (cf. figure 3(b)), AMt = 2.1 x and + ( I  - M$cp) x 
2.3 x lop2, so we might expect some deviation from linearity in this case. It is 
interesting to note that computations by Kventsel et al. [35], based upon a modified 
McMillan theory, exhibit predictions similar to those of equation (A 8). 
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